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Abstract
After over a decade of intensive research, wireless sensing technol-
ogy is nearing commercialization. However, the inherent openness
of the wireless medium exposes this technology to security flaws
and vulnerabilities. In this paper, we introduce RISiren to reveal
the risk. RISiren is a pioneering end-to-end black-box attack sys-
tem leveraging programmable metasurface with a high level of
stealthiness. The key insight of RISiren lies in its ability to generate
malicious multipath using metasurface, thereby disrupting wire-
less channel metrics influenced by genuine human activities and
facilitating malicious attacks. To ensure the effectiveness of RISiren,
we propose a novel metasurface configuration strategy aiming at
creating human-like activities that stem from a comprehensive anal-
ysis of how human activities impact wireless signal propagation.
We have implemented and validated RISiren using commercial Wi-
Fi devices. Our evaluation involved testing our attack strategies
against five state-of-the-art systems (including five different types
of recognition frameworks) representative of the current landscape.
The experimental results show that the adversarial wireless signals
generated by RISiren achieve over 90% attack success rate on aver-
age, and remain robust and effective across different environments
and deployment setups, including through wall attack scenarios.
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1 Introduction
Wireless sensing technology has garnered significant interest from
both academia and industry. Its advantage cost-effectiveness, non-
intrusive nature, and ability to operate continuously under any
lighting conditions make it promising many exciting applications,
such as smart homes [11, 12, 14, 15, 21, 31, 33, 34, 49, 57, 61], health
monitoring [9, 20, 30, 36, 37, 45, 48, 52, 58, 59], and security authen-
tication [22, 23, 28, 42]. After over a decade of intensive research,
this technology is on the cusp of commercialization, exemplified
by the forthcoming launch of Zoe Care [7] and Origin [5].

Despite the advancements in enhancing the sensing capabilities
and reliabilities of state-of-the-art wireless sensing systems [12, 21,
31, 55, 60], the inherent security vulnerabilities remain significantly
overlooked. This hole introduces substantial risks to forthcoming
commercial wireless sensing applications. For instance, an attacker
can extort a sum in commercial insurance from a nursing home by
hiding the fall detection and delaying emergency response times [1].
The reason for risk hole is that the inherently open nature of the
wireless medium, there exists the potential for malicious users to
tamper with or interfere with the sensing signals in free space.

To emphasize the holes within wireless sensing systems, sev-
eral pioneering studies have explored the vulnerabilities of these
systems by deliberately interfering with wireless sensing chan-
nels [19, 29, 39, 47, 62]. Although these works have demonstrated
commendable attack performance, they often fall short in terms
of practical applicability for two primary reasons. Firstly, the use
of additional active devices to execute attacks makes them more
detectable by the victim systems. Secondly, some strategies require
a profound understanding of the victim system’s framework and
operational parameters, a requirement that significantly reduces
their feasibility in real-world scenarios where such information
might not be readily accessible. These limitations render existing ap-
proaches less effective in investigating the potential risk of wireless
sensing.
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Consequently, is there an adversarial attack strategy capable of
enabling attackers to launch attacks without prior knowledge of
the victim system while maintaining a high level of stealth to evade
detection? If such a strategy exists, it exposes a critical vulnerability
in ongoing commercial wireless sensing systems. This revelation
would, in turn, push the urgent security need for commercial wire-
less sensing systems to evolve.

In this paper, we propose an affirmative answer through RISiren1,
an end-to-end black-box attack system with high stealthiness to
reveal the risk. RISiren injects attack by programming radio fre-
quency (RF) environment based on metasurface as illustrated in
Figure 1. Inspired by wireless identification accuracy is easily af-
fected by spatial multipath noise [41, 51, 54, 63], our key insight is
to generate malicious multipath by leveraging metasurface, thereby
tampering with the RF link affected by human activities to enable
malicious attacks. The stealth capabilities of RISiren stem from the
following factors: (i) The metasurface, as an innovative device, does
not generate signals by itself but reflects signals from the transmit-
ter. It can prompt RISiren evading from extra source detection; (ii)
Through careful design of the metasurface configuration, we can
manipulate the phases and frequency of the signal, allowing for the
injection of pseudo activities.

Though the basic idea sounds straightforward, it is non-trivial
to construct RISiren due to the following challenges:

(C1) How to determine an efficient metasurface configuration
strategy for generating disruptive multipath and interfering with
human activity characteristics within the sensing signal? The con-
figuration strategy of metasurface determines the combination of
the signals reflected from human activities and attack multipath at
the receiver. An effective configuration strategy can disrupt the ac-
tivity pattern, conversely, an ineffective configuration strategy will
fail to mask the activity pattern, leading to an unsuccessful attack.
This is because: 1) Human activity pattern changes dynamically in
the time and frequency domains, which means the time-invariant
static multipath introduced by the metasurface is inadequate for
interfering with activity recognition; 2) different human activities
have different activity magnitude distributions, which makes it
difficult to achieve a one-size-fits-all metasurface configuration
strategy.

(C2) How to build a black-box attack strategy without know-
ing the framework and parameters of the victim system? Existing
wireless sensing solutions include multiple models in recognition,
such as machine learning (ML) models and deep neural network
(DNN) models. The attacker doesn’t have access to the details of the
victim system classifier. Therefore, implementing a black-box attack
strategy to cross-recognition systems is an important challenge.

To answer the first challenge (C1), our key insight is that switch-
ing different metasurface configurations can generate time-variant
interference to the wireless channel. In addition, increasing the
energy of interference can enhance the submergence of human
activity characteristics. Therefore, RISiren aims to identify config-
urations that maximize interference differences. To this end, we
design a configuration optimization algorithm to maximize interfer-
ence signals. Specifically, through the combination of beamforming

1“RISiren” derived from the sea-nymphs “Siren” who lured sailors to their death with
a bewitching song in ancient Greek mythology.
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Figure 1: Illustration of RISiren attack cases.

and nulling beam, RISiren ensures that the metasurface can gener-
ate maximum perturbations in all directions, thus maximizing the
effectiveness of the attack.

To deal with the second research question (C2), our key observa-
tion is that the accuracy of wireless sensing recognition systems is
sensitive to the feature representation [26]. In other words, the am-
biguity of the extracted features blurs the intersectional boundaries
within a classifier, leading to considerable variances in accuracy.
Hence, RISiren can choose some activities (such as walking) with
obvious and highly independent features in all recognition sys-
tems as camouflage activity, thereby enabling robust attack across
recognition systems. However, the key question is: how does the
metasurface generate high-quality human-like camouflage activi-
ties by reflecting the wireless signals? A straightforward solution is
to directly change the switching rate of metasurface configurations
based on the characteristics of the target activity. Yet its disguised
result is coarse-grained and hardly achieves high accuracy attack
performance. Hence, RISiren firstly uses an approximation algo-
rithm to obtain the time-frequency profile of human activity, and
then we utilize a genetic algorithm to optimize the switching rate
of configurations at different time slices, to create highly fidelity
signal patterns corresponding to the camouflage activity.

We implement RISiren on a metasurface consisting of 16 × 16
meta-atoms and spanning an area of 0.35 × 0.35𝑚2. Its compact
size enables discreet integration into everyday environments like
walls, furniture, and wall art, facilitating inconspicuous attacks. We
conducted extensive experiments on 5 representative systems to val-
idate the performance in stealthy, robust, and destructive of RISiren
under different impact factors and environments. We achieved an
average Attack Success Rate of up to 90% and a maximum range
of 10 meters. Besides, RISiren can even maintain high attack per-
formance when attacking across different obstacles. Importantly,
RISiren allows for attacks without disrupting the victim’s normal
communications on the link. In summary, our contributions include
the points below:

• To the best of our knowledge, RISiren is the first black-box
attack system to conduct adversarial tampering attacks by
metasurface without providing additional sources, which
only regulates the existing electromagnetic wave environ-
ment in the environment.

• We build a novel attack strategy to maximize the interfer-
ence differences and generate human-like activity from the
metasurface by carefully designing the approximation and
optimization algorithm.

• RISiren reveals serious overlooked vulnerabilities in wireless
sensing systems, prompting the industry to think about the
security aspects of this emerging technology. Furthermore,
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we discuss and propose potentially feasible countermeasures
to protect the availability of wireless sensing systems.

2 Preliminary
In this section, we introduce a background of programmable meta-
surfaces, followed by a description of the traditional wireless sens-
ing model.

2.1 Programmable Metasurface
Programmable metasurface is a key technology in new-generation
wireless networks as it enables dynamic control of the radio envi-
ronment. A metasurface is a synthetic surface with digitally recon-
figurable radio wave reflection properties. This emerging concept
originated from the physics of metamaterials and a metasurfaces,
and has recently gained substantial traction along with the emer-
gence of “intelligent reconfigurable surfaces” for 6G wireless net-
works. A programmable metasurface is commonly implemented
using cost-effective 2D arrays of electronically adjustable meta-
atom reflectors, controlled by microcontrollers or FPGAs. Many
meta-atoms can modify the amplitude and/or phase of the reflect-
ing signals in a coherent manner to achieve beamforming or beam
steering. More specifically, a programmable metasurface can con-
sist of𝑀 columns and 𝑁 rows of reflecting meta-atoms, and each
meta-atom functions as a n-bit phase shifter. For example, a 2-bit
phase shifter can provide 4 phase states (i.e., 0, 𝜋/2, 𝜋 , and 3𝜋/2).
A phase value of each meta-atoms is referred to as a coding pa-
rameter, and the set of coding parameters for all the meta-atoms
is also called a configuration. Given that only ambient signals are
reflected, the metasurface inherently operates with high energy
efficiency and does not necessitate active RF chains. Consequently,
the metasurface entails low hardware complexity.

2.2 Traditional Wireless Sensing Model
Typically, RF signals from a transmitter bounce off multiple objects
(i.e., walls and human bodies) and eventually combine at the re-
ceiver. Suppose 𝑋 (𝑓 , 𝑡) and 𝑌 (𝑓 , 𝑡) represent the transmitted and
received signals on the sub-carrier with frequency 𝑓 at time 𝑡 .
𝑌 (𝑓 , 𝑡) can be expressed as:

𝑌 (𝑓 , 𝑡) = 𝐻 (𝑓 , 𝑡) × 𝑋 (𝑓 , 𝑡) (1)
where 𝐻 (𝑓 , 𝑡) refers to the channel frequency response (CFR),
which encapsulates the multipath of the surrounding environment
and human activities. 𝐻 (𝑓 , 𝑡) can be written as:

𝐻 (𝑓 , 𝑡) = 𝐻𝑠 (𝑓 , 𝑡) + 𝐻𝑑 (𝑓 , 𝑡)

= 𝐻𝑠 (𝑓 , 𝑡) +
𝑃∑

𝑝=1
𝑎𝑝 (𝑓 , 𝑡) 𝑒− 𝑗2𝜋 𝑓 𝜏𝑝 (𝑡 ) , (2)

where 𝐻𝑠 (𝑓 , 𝑡) is the static multipath component, including the
Los path and the reflected path from the environment; 𝐻𝑑 (𝑓 , 𝑡) is
the dynamic path reflected by human activity; 𝑎𝑝 (𝑓 , 𝑡) represents
the signal attenuation of 𝑝𝑡ℎ path; 𝜏𝑝 (𝑡) denotes the time delay
resulting from the 𝑝𝑡ℎ path length.

3 Threat Model
Attack Scenarios: Suppose a pair of transmitter and receiver, de-
noted as Alice and Bob, are used for wireless sensing (Figure 1).
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Figure 2: The attack overview of RISiren.

These devices can play various roles such as Wi-Fi access points,
mobile devices, or laptops. Eve acts as an adversary who can ma-
nipulate a metasurface to generate a malicious multipath for dis-
rupting Bob’s sensing capabilities. Eve’sRISiren metasurface serves
as a sophisticated physical layer attacker, manipulating the signal
patterns received by Bob, to create an illusion of human activi-
ties. The metasurface launches stealthy attacks from behind walls,
without requiring a direct line-of-sight to Bob and Alice. Notably,
no synchronization or real-time coordination is needed between
the RISiren metasurface and Alice/Bob. Furthermore, Bob remains
stationary and the RISiren metasurface is aware of Bob’s relative
direction. The RISiren metasurface can be equipped with a Wi-Fi
packet sniffer [8, 56] for monitoring human activity and triggering
the RISiren attack.

A typical attack scenario can be an intelligent medical center
equipped with advanced commercial wireless recognition system
equipment. The elder’s dangerous activities (i.e., falling) can be
monitored in real-time through wireless sensing devices deployed
inside the room or in the corridor. Owing to a thin form factor, meta-
surface can be hidden in the facades of the ambient environment,
such as murals or outside walls. The attacker uses the disguised
activity strategy to trigger the victim system to misjudge the user’s
activities, such as identifying a fall as walking, which is ignored by
medical staff, causing security risks. Such motivations may stem
from defrauding high medical insurance or harming the life safety
of guardians.

Attack mode: We focus on two attack modes:
(1) The first attack goal is play-in-plug malicious attacks. The

metasurface continuously injects malicious multipath to generate
pseudo activity for deceiving the sensing system recognition even
when no one is active.

(2) The second one is the smart trigger attack, which focuses on
the long-term latent attack. The metasurface stays dormant and
only activated when the wireless signals are disturbed by human
activities such as falls. In such scenarios, the metasurface needs to
integrate auxiliary devices such as mmWave [3] or Wi-Fi sniffers
to capture the occurrence of activities. Then, RISiren immediately
triggers the generation of a spoofing activity. Note that sniffers are
only used to monitor human activity and trigger the attack mode
of metasurface. Sniffers don’t affect the stealthy of RISiren. For
example, the size of commercial millimeter-wave (mmWave) sniffer
HLK-LD2420 is only 20𝑚𝑚 × 20𝑚𝑚[3], thus it can be embedded in
the metasurface easily.
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4 System Overview
4.1 SystemWorkflow
The system workflow is shown in Figure 2. Before the attack, the
metasurface generates attack configurations offline (Section 5.2).
These configurations are essentially a sequence of the meta-atoms’
states, which distort the impinging signal patterns to fake human
activities (Section 6.2). Ultimately, under RISiren’ adversarial attack,
the victim’s activity recognition system will be tampered with the
activity results expected by the attacker.

4.2 Design Choice
RISiren is an end-to-end black-box stealth attack system against
wireless sensing. Actually, it reveals universal risks inherent in
wireless sensing systems, irrespective of the frequency band and
signal protocol. To comprehensively illustrate the working princi-
ples of RISiren, we take a Wi-Fi-based fall monitoring system as an
attack example for the following reasons:

(i) Real-world significance and practicality. Fall detection has
become one of the main causes of death for the elderly [2]. Medical
reports indicate that the golden rescue time is only one hour for
severe falls [53]. Fall detection represents of the very few practical
wireless sensing use cases, which has been commercialized [5] and
recently deployed by Verizon [16]. Therefore, the consequences of
attacks on such fall detection systems are undoubtedly fatal, raising
significant concerns about the safety of wireless sensing.

(ii) Commonality of sensing principles. Human fall detection
shares the same sensing model as other activity recognition sys-
tems, such as gesture recognition. These systems identify various
activities by using signal processing or deep learning models to
analyze the time/frequency domain features within the RF data.
Therefore, while RISiren primarily focuses on attacking the human
fall scenario, its fundamental concept can easily translate to other
sensing applications.

(iii) Fall detection is the toughest obstacle to overcome in attacks.
Human fall events are abrupt and often cause highly disturbing
features on wireless sensing signals. Hence, fall detection is one
of the most reliable classes of activities that off-the-shelf wireless
sensing devices can easily detect. By attacking this challenging
baseline, we can essentially push the limit of RISiren and verify its
potential against other wireless sensing activities with less dramatic
features.

5 Metasurface Configuration Strategy
In this section, we first describe the metasurface-based sensing
model and then detail our proposed schemes for generating dis-
ruptive multipath signal patterns by using an efficient metasurface
configuration strategy.

5.1 Metasurface-based Sensing Model
We now extend the basic wireless sensingmodel (Eq. 2) to accommo-
date the case when a metasurface (MTS) is involved. As illustrated
in Figure 1, the metasurface introduces a new controllable path
between the Tx and Rx (i.e., Tx → metasurface → Rx). Thu the
wireless channel can be written as:

𝐻 (𝑓 , 𝑡) = 𝐻𝑠 (𝑓 , 𝑡) + 𝐻𝑑 (𝑓 , 𝑡) + 𝐻𝑚 (𝑓 , 𝑡) (3)
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where 𝐻𝑚 (𝑓 , 𝑡) is the metasurface path.
When changing the metasurface configurations, the wireless

channel is distorted. This is because the configuration determines
how a metasurface interacts with the electromagnetic waves (i.e.,
redirection or reshaping). Therefore, the Eq. 2 can be rewritten as:

𝐻 (𝑓 , 𝑡) = 𝐻𝑠 (𝑓 , 𝑡) + 𝐻𝑑 (𝑓 , 𝑡) + 𝛼𝑐𝑜𝑑𝑒𝑖 𝑒
− 𝑗𝜙𝑐𝑜𝑑𝑒𝑖 (4)

where 𝛼𝑐𝑖 and 𝜙𝑐𝑖 are the amplitude and phase provided by 𝑖𝑡ℎ

configurations.
Finally, to extract the Doppler frequency shift (DFS) spectrogram

from 𝐻 (𝑓 , 𝑡), we adopt the short-time Fourier transform (STFT) to
obtain Doppler shifts spectrogram. It can be represented by:

𝑆𝑇𝐹𝑇 (𝐻 (𝑓 , 𝑡)) = 𝑓𝑠 (𝑡) + 𝑓𝑑 (𝑡) + 𝑓𝑚 (𝑡) (5)

where 𝑓𝑠 (𝑡) represents the frequency resulting from the static path,
typically considered as 0 since the static path is generally not subject
to time variations. 𝑓𝑑 (𝑡) is the DFS caused by human activity. 𝑓𝑚 (𝑡)
is the frequency brought by the metasurface link.

5.2 Metasurface configuration Strategy
In this section, we mainly focus on introducing how to determine ef-
fective metasurface configuration strategies to generate destructive
multipath, including the attack frequency 5.2.1 and power 5.2.2.

5.2.1 How to generate frequency offset patterns? To ensure the ef-
fectiveness of attack performance, RISiren should generate attack
frequency within the frequency range introduced by human activ-
ities (i.e., 0 ∼ 80 Hz [46]). To do so, the key insight of RISiren is
that the configuration of the metasurface needs to be periodically
switched, to distort the impinging signals and interfere with those
signals reflected by human activity.

For ease of explanation, we establish a simple example only fo-
cusing on the metasurface path 𝐻𝑚 (𝑓 , 𝑡). We set 𝑇1 as a period
to switch the meta-atoms’ configurations. Without considering
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external interference, the amplitude of the Tx-MTS-Rx channel
only depends on the configurations of the metasurface. So we can
simplify 𝐻𝑚 (𝑓 , 𝑡) as a square wave signal with 𝑇1 period. In other
words, the periodic variation of the configurations causes a fre-
quency offset of 1/𝑇1 Hz. Thus, we can intentionally design the
switching period 𝑇1 to impose any frequency offset we want.

We conduct experiments to verify the feasibility of introducing
dynamic path from metasurface to interfere with human activities.
Specifically, the transmitter and receiver are Wi-Fi devices, sep-
arated by 3 m. The metasurface is deployed along the 30◦ angle
relative to transmitter with a 1 m distance. All devices are placed
at a height of 1.1 m. We set 𝑇1 to 50 ms. Although the CSI data is
inevitably subject to external interference in real scenarios, we can
still clearly see periodic CSI amplitude changes in Figure 3, which
is consistent with the configuration switching period. As shown in
Figure 4, when the interval between two metasurface coding con-
figurations is 50 ms, a frequency offset of 20 Hz (1/50 ms= 20 Hz)
can be observed in the spectrum.

5.2.2 How to guarantee the attack power? Insufficient attack power
(i.e., the intensity of the adversarial frequency) can impede the suc-
cessful execution of an attack. For instance, in Figure 5(a), when the
metasurface generates a lower attack power at 15 Hz, it’s apparent
that the original human activity feature remains largely unaffected.

To investigate the impact of the limited attack power, we first
collect a dataset of typical in-home human activities - including
sitting, standing up, falling, bending, and walking - by using com-
mercial Wi-Fi devices. We implemented a CNN-based wireless sens-
ing model following [36] as a simple 5-class activity recognition

system. Subsequently, we artificially superimpose different adver-
sarial frequency intensities on the data of the original activity data
through changing the amplitude of adversarial frequency. The am-
plitude of adversarial frequency changes from 0 to 40. The results
are shown in Figure 6. As the frequency amplitude increases, there
is a noticeable increase in the attack success rate. This is because
the higher the adversarial frequency intensity, the interference to-
wards the human activities (Figure 6. Consequently, the classifier
is more inclined to extract features from the adversarial frequency,
resulting in misidentification.

Therefore, RISiren should create a high-intensity attack signal.
Yet this is challenging in practice, given the metasurface’s limited
size and lack of power amplifiers. A straightforward solution is to
switch the metasurface between the “OFF” state and beamform-
ing state. Unfortunately, when in the “OFF” state, the metasurface
acts like a mirror for the impinging signals, leading to only mi-
nor difference in reflected signal intensity between the two states.
We conduct an experiment to demonstrate the phenomenon. The
deployment layoutt and results are shwon in Figure 7(a) and Fig-
ure 7(b), respectively. In Figure 7(b), we can see that when the
receiver is located in the range of −20◦ to −20◦, the metasurface
can not maintain a high intensity, implying that RISiren cannot
achieve high-intensity attacks for the majority of the angles.

To overcome this challenge, we propose switching the metasur-
face between beam “nulling" and beamforming states. Specifically,
beamforming configuration aims to focus its energy towards a
specific direction, whereas beam nulling diminishes or nullifies
the signal in that direction. By combining both, we can effectively
increase the contrast between different states of the metasurface,
leading to an adversarial frequency offset pattern with high inten-
sity. In what follows, we elaborate on the beamforming and nulling
design.

Beamforming algorithm: The metasurface has𝑀 × 𝑁 meta-
atoms (𝑀 = 𝑁 = 16 in our prototype). As shown in Figure 8, the
propagation distance experienced by the incident electromagnetic
wave before impinging on the (𝑚,𝑛)𝑡ℎ meta-atom is 𝑑 (𝑚,𝑛) , which
leads to an initial phase shift of 𝜙𝐼(𝑚,𝑛) = −𝑘𝑑 (𝑚,𝑛) , where 𝑘 = 2𝜋/𝜆;
𝜆 is the wavelength of signal;𝑚 ∈ [1, 𝑀] and 𝑛 ∈ [1, 𝑁 ]. Suppose
the direction of the legitimate receiver is (𝜃𝑙 , 𝜑𝑙 ), where 𝜃𝑙 and 𝜑𝑙
are the elevation and azimuth angles, respectively. Therefore, to
beamform the signal towards the direction (𝜃𝑙 , 𝜑𝑙 ), the theoretical
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phase distribution for the meta-atoms is:

𝜙𝑇(𝑚,𝑛) = −𝑘 (𝑥𝑚 sin𝜃𝑙 cos𝜑𝑙 + 𝑦𝑛 sin𝜃𝑙 sin𝜑𝑙 ) , (6)

where 𝑥𝑚 and𝑦𝑛 are the𝑋 -axis and𝑌 -axis distances of the (𝑚,𝑛)𝑡ℎ
meta-atom relative to the origin of coordinate. Thus, the ideal phase
compensation generated from each meta-atom should be the differ-
ence of 𝜙𝐼(𝑚,𝑛) and 𝜙

𝑇
(𝑚,𝑛) :

𝜙𝐶(𝑚,𝑛) = 𝜙𝑇(𝑚,𝑛) − 𝜙𝐼(𝑚,𝑛) . (7)

In our prototype, each meta-atom is a 2-bit phase shifter with 4
possible states: 0, 𝜋/2, 𝜋 , 3𝜋/2. Phase shifters approximate the
desired phase shift through a quantization rule:

Q
(
𝜙𝐶(𝑚,𝑛) |2−𝑏𝑖𝑡

)
=


0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝜋
2 , 𝑖 𝑓 𝜋

4 ≤ 𝜙𝐶
(𝑚,𝑛) <

3𝜋
4

𝜋, 𝑖 𝑓 3𝜋
4 ≤ 𝜙𝐶

(𝑚,𝑛) <
5𝜋
4

3𝜋
2 , 𝑖 𝑓 5𝜋

4 ≤ 𝜙𝐶
(𝑚,𝑛) <

7𝜋
4

(8)

Beam nulling algorithm: Like beamforming, one straightfor-
ward method to achieve beam-nulling configuration is to adjust the
phase shifts across meta-atoms to counteract signals in a specific
direction. However, this method can only create the null-line rather
than null-beam with any significant width. It leads to the attacker
having extremely precise information about the victim receiver’s lo-
cation, which is hardly obtained in reality. Additionally, even when
a receiver is positioned within the null-line, it remains vulnerable
to interference from sidelobes in adjacent directions, degrading the
effectiveness of the attack.

To overcome this issue, we use particle swarm optimization
(PSO) to optimize the configuration. Note that other optimization
methods can also be used [10, 40]. We define the objective function
of optimization as follows:

J ∈𝑚𝑖𝑛
√︁
(𝑙1)2 + (𝑙2)2 + (𝑙3)2 (9)

𝑆.𝑡 .

𝜃𝑙 ∈ [𝜃𝑙 − 𝐵𝑊1/2, 𝜃𝑙 + 𝐵𝑊1/2]
𝜑𝑙 ∈ [𝜑𝑙 − 𝐵𝑊2/2, 𝜑𝑙 + 𝐵𝑊2/2]
𝛾 ∈ 𝐶𝑢 (𝜃𝑙 , 𝜑𝑙 )

where 𝑙1 = 1
|𝐺𝑎𝑖𝑛 (𝜃𝑙 ,𝜑𝑙 ) −𝐵𝐹𝐺𝑎𝑖𝑛 (𝜃𝑙 ,𝜑𝑙 ) |

aims to minimize the gain

of the desired beam; 𝑙2 = 𝑉𝑎𝑟 (𝐺𝑎𝑖𝑛 (𝜃𝑙 ,𝜑𝑙 ) ) targets beam flatness
within the desired direction, reducing variance in the desired area,
enhancing uniformity; 𝑙3 = max(𝐺𝑎𝑖𝑛𝛾 ) −min(𝐺𝑎𝑖𝑛𝛾 ) intends to
eliminate high-gain mainlobes in directions other than the spec-
ified victim receiver. (𝜃𝑙 , 𝜑𝑙 ) represents the desired beam nulling
direction. 𝐺𝑎𝑖𝑛(·) refers to the null-gain function within the beam
pattern. 𝑉𝑎𝑟 (.) is the variance function. 𝐵𝑊1 is the beam width
around the 𝜃𝑙 in elevation angle, and 𝐵𝑊2 is the beam width around
the 𝜑𝑙 in azimuth angle. 𝛾 is the collection of directions other than
the target direction (𝜃𝑙 , 𝜑𝑙 ).

We conduct an experiment to demonstrate the effectiveness of
the beamforming and nulling design. The deployment is shown
in Figure 7(a). Compared to Figure 7(b) and Figure 7(c), when the
beamforming gain remains constant, the beamforming and nulling
beam can obtain larger amplitude changes in all directions. This is
because the nulling beam configuration can achieve constant low
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Figure 9: The different DFS samples of different activities.

levels of gain in all directions. The results of the frequency spectrum
are as shown in Figure 5(b), it can cover the original sample seriously
when using beamforming and nulling beam configurations.

6 RISiren Attack Strategy
In this section, we devise a universal attack strategy that ensures
targeted attacks while maintaining the stealthiness of RISiren.

6.1 How to Choose Camouflage Activity?
Existing wireless sensing methods for human activity recognition
have commonly utilized classifiers to discern and categorize various
activities:

𝑦 = 𝐹 (𝑥 ;𝜔) (10)

where 𝑦 is the ground-truth label of human activity and 𝑥 is the
input data, which can be extracted features or original data. 𝐹 (·) is
the representation of a classifier, such as Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), Random Forest (RF), CNN, and
so on. 𝜔 is the set of all parameters in the classifier.

Traditional attack systems [19, 29] aim to optimize attack data
𝑥𝑎𝑑𝑣 and assume prior knowledge of the classifier model (i.e., 𝐹 (·))
is known. They then inject 𝑥𝑎𝑑𝑣 to push the original data across
the decision boundary, leading to the misidentification of activities.
The process can be formulated as:

𝑦𝑓 𝑎𝑘𝑒 = 𝐹 (𝑥𝑜𝑟𝑖 + 𝑥𝑎𝑑𝑣 ;𝜔) (11)
where 𝑥𝑎𝑑𝑣 and 𝑥𝑜𝑟𝑖 represent the attack data and the original data
of activity, respectively. 𝑦𝑓 𝑎𝑘𝑒 is the desired activity label of the
attacker.

Although such systems have shown promising results in terms
of attack performance, the classifier model is hard to obtain for
attackers in reality. In addition, these methods lack generalization,
as the impact of the adversarial attack data 𝑥𝑎𝑑𝑣 heavily depends on
a specific classifier [62]. Any alterations in the recognition system
tend to reduce the attack accuracy. This is because the accuracy
of wireless sensing recognition systems is sensitive to the feature
representation from the original data.

To overcome this challenge, we propose a feature camouflage
scheme to achieve an attack without knowing the classifier model.
Specifically, we choose one normal daily activity (e.g., walking) as
the camouflage activity. Then, we design the metasurface to gen-
erate high-quality human-like camouflage activities by reflecting
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Figure 11: The RISiren metasurface can create different human-like
activities.

the wireless signals. By doing so, we can cover the features of the
original activity, so that the injected adversarial activity features
will overwhelm the normal legitimate features. With this measure,
our attack strategy can be characterized as:

𝑋𝑜𝑟𝑖 + 𝑋𝑎𝑑𝑣 → 𝑋𝑎𝑑𝑣 (12)
One immediate question here is: what kind of activities should

we select as 𝑋𝑎𝑑𝑣? Since the wireless signals usually carry adverse
domain2 information unrelated to human activities, leading to ex-
tracting features that may not accurately represent a unique activity.
Choosing such activities as part of the camouflage for RISiren’s
attacks could lead to unstable attack performance. For instance, if
“push” is selected as the camouflage activity to target the recogni-
tion system, the ambiguous features might yield an attack result of
“pull”, which deviates from the intended outcome.

We take daily activities as an example, we collect several activity
samples, and the DFS are as shown in Figure 9. Among these ac-
tivities, “walking” exhibits distinct feature differences owing to its
duration and periodicity. Therefore, our primary approach involves
selecting these types of activities, such as walking, as target camou-
flage activities. It is important to note that while walking is a prime
example, various other activities are exhibiting robust and distinct
features that can also serve as suitable candidates for camouflage
activities. RISiren can camouflage target activity into the original
activity sample due to the independent and intense features ex-
hibited by the adversarial activity. Consequently, the recognition
system outputs the incorrect result that RISiren specifically devises.

6.2 How to create the camouflage activity?
The next question is: how does the metasurface generate high-
quality human-like camouflage activities by reflecting the wireless
signals? A straightforward method involves altering the metasur-
face switching sequence according to feature fluctuations. However,
this manually crafted pattern, as depicted in Figure 10(a), results in
rough features that noticeably differ from normal features, losing
its stealthiness.

To address this limitation, we propose an approximation algo-
rithm that derives the time-frequency profile of human activity.
We then employ a genetic algorithm to optimize the configura-
tion switching rates across various time intervals. This optimized
approach aims to create highly realistic signal patterns correspond-
ing to the chosen camouflage activity, ensuring higher fidelity in
mimicking human activity.

2In this work, a domain is a deployment setup including factors like users, deployment
environment, device setup, etc.

Specifically, we simulate the relationship between the switching
sequence 𝑆𝑛 of metasurface and the DFS profile of human activities.
Note that the DFS profile indicates the frequency of human activ-
ity at each time slice or the frequency of switching metasurface
configuration. We extract the DFS profile 𝐿𝑎𝑐𝑡 and 𝐿𝑆𝑛 by:

𝐿𝑆𝑛 = 𝑀𝑎𝑥 (𝐷𝐹𝑆𝑆𝑛 )
𝐿𝑎𝑐𝑡 = 𝑀𝑎𝑥 (𝐷𝐹𝑆𝑎𝑐𝑡 )

(13)

where 𝐷𝐹𝑆𝑆𝑛 is the DFS generated by 𝑆𝑛 , and 𝐷𝐹𝑆𝑎𝑐𝑡 represents
the truth activity DFS.

To optimize the similarity between 𝐿𝑆𝑛 and the true DFS profile
𝐿𝑎𝑐𝑡 , we use the Pearson correlation coefficient [13] as the fitness
measure. Pearson correlation coefficient is used in statistics to mea-
sure the correlation of two vectors and can be written as:

𝜌𝐿1,𝐿2 =
𝑐𝑜𝑣 (𝐿1, 𝐿2)
𝜎𝐿1𝜎𝐿2

(14)

Where 𝐿1 and 𝐿2 are two independent vectors. 𝑐𝑜𝑣 (𝐿1, 𝐿2), 𝜎𝐿1 , and
𝜎𝐿2 are the covariance and standard deviation of 𝐿1 and 𝐿2. The
value range is [−1, 1]. The result is closer to 1, 𝐿1 and 𝐿2 are more
similar. We formulate the fitness score 𝐹𝑠 as :

𝐹𝑠 =
1

𝜌 (𝐿𝑆𝑛 ,𝐿𝑎𝑐𝑡 ) + 1
(15)

which reflects the correlation between the 𝐿𝑆𝑛 and the real activity
ones. The lower the fitness score is, the closer they are. As shown in
Figure 10(b), the final optimized sequence exhibits high similarity to
the ground truth data. We also use the optimization we proposed to
generate other activities’ camouflage samples like jump, stoop, and
stand. The results are shown in Figure 11. We can find they are sim-
ilar to the original activities. Thus, through the optimization of the
switching sequence, RISiren exhibits its ability to generate diverse
human-like activities by harnessing metasurface technology.

7 Implemention
Metasurface Prototype. RISiren metasurface is designed by as-
sembling multiple optimized meta-atoms. We build a prototype of
RISiren metasurface that consists of 16 × 16 meta-atoms. All the
meta-atoms are evenly distributed inside an area of 0.35 × 0.35𝑚2,
with a distance of 19.5𝑚𝑚 between adjacent meta-atoms, as shown
in Figure 12(b). To reconfigure the PIN diode states of each meta-
atom, we embed a bias layer to transmit DC bias voltage to each
PIN diode (SMP1340-040LF PIN diodes [6]).

Hardware control. To configure the whole metasurface, we
design a control circuit module consisting of a microcontroller
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Figure 13: The stealth verification.

(i.e., STM32H743IIT6, STMicroelectronics) and 64 SN74LV595 shift
registers to provide different DC voltages (0 V or 5 V) for each meta-
atom. Specifically, we divide the entire metasurface board into 4
zones. For each zone, we use two channels in the microcontroller
to transmit a data stream with 128 bits to control 128 PIN diodes, as
shown in Figure 12(b). Via the above set up, the controller is now
able to independently configure the state of each meta-atom’s PIN
diode.

8 Evaluation
8.1 Experiment setup
In order to verify the performance of RISiren under different clas-
sifier architectures, we reproduced different systems, including 5
different classifiers model. Specifically: (1) Falldefi [37], splits activ-
ity data through power burst curves, and uses SVM to distinguish
falls from other daily events. The highest reference recognition
accuracy in Falldefi is 93%, and the recognition accuracy we re-
produce is 88.30% (2) The work [36] analyzes the limitations of
existing segmentation based on signal energy, chooses to use a
sliding window to segment the spectral features of the data, and
then combines and inputs into the CNN network for identification.
The reference recognition accuracy in this work was 92%, and the
recognition accuracy we reproduced is 97.4%. For ease of reference,
we use its abbreviation WFDUSI instead in the experiments. (3)
Actrec [11] identifies by extracting multiple feature combinations
such as mean, variance, maximum, and minimum in mean Doppler
shift (MDS) from the spectrum. Naive Bayes, KNN, and decision tree
models are selected for identification. The recognition accuracy of
the three classification models in Actrec is 94.6%, 96.2%, and 98.9%
respectively. The recognition accuracy we reproduced is 96.61%,
93.42%, and 90.77% respectively. For ease of reference, we use the
abbreviations ActrecBayes, ActrecKNN, and ActrecTree instead.

We experiment with RISiren in three different environments,
including a single apartment, a corridor, and a bedroom. The exper-
iment scenario is shown in Figure 12(a). The victim transmitter and
receiver are equipped with an Intel 5300 NIC and three antennas.
The transmission rate of systems is 1000 packets per second. All
transceivers are put in 110 cm height so that the motion of users
with different heights can be detected. All the experiments have
been approved by our Institutional Review Board (IRB).

Data size3 We invite 7 volunteers (5 males and 2 females) to sim-
ulate the victims’ falling, and collect five daily activities (including
falling, walking, sitting, stooping, and standing) and four gestures
(pushing, circling, zigzagging, and sliding) as dataset to reproduce
the five recognition systems. We totally collect 1,670 data samples
in 3 environments and 13 evaluation scenarios experiments. We
conduct 10 tests for each variable changed in different experiments.

Metric.We define two metrics to quantify the effectiveness of
attack: Attack success rate (ASR), which is the ratio between the
number of successful attacks and the total number of attacks. A
successful attack means that when sending a confrontational signal,
the victim system misjudges it as the type of target gesture the

attacker needs. Can be accessed by: 𝐴𝑆𝑅 =
𝑁𝑆𝑢𝑐𝑐𝑒𝑠𝑠
𝐴−→𝑡𝑎𝑟𝑔𝑒𝑡

𝑁𝐴𝑎𝑙𝑙
𝐴−→𝑡𝑎𝑟𝑔𝑒𝑡

, where the

𝑁𝑆𝑢𝑐𝑐𝑒𝑠𝑠
𝐴−→𝑡𝑎𝑟𝑔𝑒𝑡

is the number of activity𝐴 was successfully misjudged

as the target activity, and the 𝑁𝐴𝑎𝑙𝑙
𝐴−→𝑡𝑎𝑟𝑔𝑒𝑡

is total number of at-
tacks launched. Recognition success rate (RSR), which is defined to
evaluate the attack performance in the victim’s recognition system.
Specifically, the RSR is defined as the ratio of the number of samples
correctly classified by the recognition classifier to the total num-
ber of samples. In our system, the lower RSR is, the better attack
performance is.

8.2 Micro-benchmark
Stealthiness of RISiren. In order to verify the stealth of RISiren,
we reproduce the existing Wi-Fi aware co-channel interference
detection method. WiAnti [17] and Phaseanti [18] proposed subcar-
rier correlation judgment during each subcarrier and packet loss
rate per time to check whether there is co-channel interference,
respectively. The lower the subcarrier correlation or the higher
the packet loss rate, the more severe the environmental channel
interference. And they respectively defined threshold indicators
for judging whether there is interference. We collect CSI samples
under the RISiren attack and calculate the average of the two met-
rics, as shown in Figure 13. The numerical distribution of the two
metrics during the attack is consistent with the reference normal.
The average subcarrier correlations are all above 0.9, higher than
the recommended threshold of 0.86, and the average packet loss
rate is also lower than the threshold level of 0.07. And RISiren will
not affect the communication performance of the victim system.

3Dataset is available at: https://github.com/HappyChenghan/RISiren.
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Therefore, we demonstrate that the RISiren system remains stealthy
and difficult to detect during attack.

Verification of attacking different activities.We choose four
daily activities including falling, standing, sitting, and stooping
to evaluate the attack performance under different activities. We
set the metasurface behind the transmitter at 1 m, and keep the
distance between the transceiver at 1.5 m. The attack results (i.e.,
ASR and RSR) are shown in Figure 14. We observe that ASR exceeds
95% for all activities. Additionally, the ASR for other daily activities
is higher than for falling. This is because these activities involve
slower speeds, resulting in lower Doppler frequencies and smaller
CSI amplitude differences (Figure 9), which indicates that they are
easier to tamper with. Furthermore, the RSR for different activities
is less than 1.6%, meaning the recognition system struggles to accu-
rately identify human activities. Note that while both ASR and RSR
measure the attack performance,ASR is a more rigorous metric than
RSR. ASR indicates a successful attack only if the recognition result
matches the target disguised activity. In contrast, RSR considers an
attack successful if the recognition result differs from the ground-
truth label, allowing for ambiguous recognition to be considered
successful attacks. Therefore, to accurately represent the attack
performance of RISiren, we use ASR in subsequent experiments.

Compared the attack performance of RISiren with differ-
ent baselines. In this experiment, we aim to verify the effectiveness
of the configuration strategy and camouflaged activity strategy of
RISiren by comparing the following three baselines, the details are
as follows: We use two cases to verify the camouflaged activity
strategy’s effectiveness. The first one is a naive approach: switch-
ing optimized beamforming-nullforming coding configurations by
using a random switching sequence. More advanced, the second
one is switching the optimized coding configurations using a rough

manually human-like configuration switching sequence without
optimizing. We represent the two baselines as “Straight Result” and
“Random Sequence”. To verify the effectiveness of the configuration
strategy, we use switching random coding configurations by using
the switching sequence optimized by our algorithm. We represent
the baseline as “Random Coding”. We set the metasurface behind
the transmitter at 1m, and keep the distance between the transceiver
at 1.5 m.We evaluate the averageASR of RISiren and three baselines.
The results are shown in Figure 15, we can clearly see the average
ASR of RISiren is 95.04%, and the ASR of the “Random Coding” is
only 22.45%. It is due to the random coding configuration can hardly
provide the powerful adversarial feature to mislead the recogni-
tion system. Besides, the ASR results of “Random Sequence” and
“Straight Result” are both lower than 50%. Although the “Straight
Result” achieve higher attack performance compared with “Ran-
dom Sequence”, it still can not camouflage the adversarial activity
feature well.

8.3 Overall performance of RISiren
We deploy the actual attack scenario in a fan-shaped single room
to verify the overall effect of the attack. As shown in Figure 15(a),
we set the same layout that keep transceiver spacing to 1.5 m,
and conduct the volunteer fall activity at 1 m in the direction of
the center line. The metasurface is deployed 1 m away from the
transmitter, surrounded by various furniture to mimic the complex
multipath in the real room. As shown in Figure 16, the ASR of five
different recognition systems are all above 94%. It can be seen that
RISiren has robust attack generalization for different recognition
systems.
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8.4 Evaluation of extrinsic impact factors
We investigate major external factors that may affect the attack
performance: the impact of victims’ falling locations, impacts of per-
sonal differences, and different environments, In each experiment,
we only change a single variable while maintaining others.

Impact of victim’s location. In order to evaluate the impact of
the victim falling at different locations on the attack, we randomly
select five locations (P1-P5) in a single room to conduct the victim
falling test. The actual deployment is shown in Figure 17(a). We
separate the distance of the transmitter (Tx) and receiver (Rx) by
1.5 m and deploy the metasurface at a distance of 1 m from Tx. We
also verify the ASR when the metasurface attack is working and the
recognition accuracy of five different systems without attacking.
The results are shown in Figure 17(b). We can see that the victim
recognition system we reproduce is robust. The average attack
success rates are shown in Figure 17(c). We find that the victim
falling down at different locations has little impact on our attack,
because RISiren directly injects the adversarial perturbation into
the Rx end through the newly created malicious multipath provided
by metasurface, and is almost not affected by the victim’s location.

Impact of different users. In order to explore the impact of
different people on attacking, we recruit 7 volunteers, with heights
ranging from 158 𝑐𝑚 to 183 𝑐𝑚 and weight ranges from 48 𝑘𝑔 to
86 𝑘𝑔. The specific information is as shown in Figure 18(a). We
deploy the metasurface 1𝑚 behind the Tx, and the transceivers are
1.5𝑚 apart. Each volunteer performs the falling action individu-
ally. The experimental results are shown in the Figure 18(b). The
average attack success rates for each volunteer are all above 90%.
Therefore, we demonstrate the robustness of our attack system
against different users.

Impact of different environments. We further conduct ex-
periments in 3 different environments: a single apartment, a bed-
room, and a corridor. The bedroom and hall represent the multipath
complex environment and the multipath simple environment re-
spectively. In each environment, we select three different attack
positions to deploy the metasurface, as shown in Figure 19(a). The
experimental results are shown in Figure 19(b). In three different
environments, our average attack success rates are 92.4%, 93.60%,
and 93.4% respectively. This shows that our attack is extremely
robust to the environment.

8.5 Evaluation of intrinsic impact factors
Impact of different orientations between metasurface and
victims’ system. In order to explore the impact of the deployment
position of the metasurface on the attack performance, our deploy-
ment is shown in Figure 20(a). We use a radius of 2.25 m from the
center of Tx-Rx and evaluate at every position between −90◦ and
90◦ in 30◦ intervals. We verify the performance of our attack under
five recognition systems. The results are shown in the Figure 20(b).
In each direction, RISiren can maintain over 90% ASR.

Impact of different distance between metasurface and vic-
tims’ system. In order to verify the impact of the distance between
the metasurface and the victim system, our deployment is shown
in Figure 21(a). The distance between the Tx and Rx is 1.5 m. The
distance between the metasurface and Tx varied from 1 m to 10 m
at 1m intervals. The results are as shown in Figure 21(b), we can
see RISiren can maintain 10.08% ASR effective until 10 m. As the
distance between metasurface and victims’ system increases, the
average ASR decreases. RISiren can still maintain a 66.71% ASR in
average at 7 m, ensures the attacker’s ability to launch attacks from
long distance.
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Impact of metasurface traversing different obstacles. In
order to consider the concealment problem of metasurface and the
existence of obstacles in real deployment. We test the impact of
the metasurface when blocked by different materials in the envi-
ronment. The materials we explore are glass, foam, wood, card-
board,and plastic. The specific experimental deployment is shown
in the Figure 22(a). We place the metasurface 1𝑚 away from the Tx
end and place plates of different materials in the middle. The exper-
imental results are shown in the Figure 22(b). We found that under
these types of obstacles, the average attack accuracy is higher than
80.45%. Besides, compared to drywall which is typically found in
hospitals or nursing homes[4], the materials we evaluated like wood
and glass exhibit higher signal path loss[44]. Therefore, RISiren can
penetrate daily obstacles and achieve outside wall attack.

Impact of different number of meta-atoms. Here we verify
the impact of different numbers of meta-atoms on attack perfor-
mance. We keep the deployment as same as Figure 15(a) shows. For
each test, we set the two outermost meta-atoms of the metasurface
to a state of 0. When the element is set to 0, It can be understood
that the meta-atoms do not work. This procedure is consistently
repeated in each iteration, gradually reducing the count of active
meta-atoms. That is, the number of meta-atoms each time is: 16×16,
12 × 12, 8 × 8. The experimental results are shown in the Figure 23.
As the number of meta-atoms decreases, the attack success rate
gradually decreases. This is because the intensity of the injected
adversarial frequencies decreases as the number of meta-atoms
decreases. It is worth noting that the attack effect of Falldefi is the
most affected. This is because a frequency shift intensity thresh-
old is set in its preprocessing stage to divide action occurrences.
When the attack intensity is lower than the threshold, the activity
cannot be triggered. In addition, as the number of meta-atoms de-
creases, the dimensions of themetasurface are: 21.6 𝑐𝑚×21.6 𝑐𝑚 and
14.4 𝑐𝑚×14.4 𝑐𝑚 respectively. Therefore, the ease of deployment of
the metasurface will be further improved. In order to balance this
trade-off, the attacker can customize the number of metasurface
units according to the actual attack scenario.

8.6 Attacking other sensing systems
In this section, we evaluate the compatibility of our system against
threats to sensing systems outside of the above evaluation cases.
Specifically, we analyze the generality of the RISiren attack method
to systems with other pre-processing methods; and use a gesture
recognition system as a case to demonstrate the generalization
performance of the RISiren attack scheme.

In order to verify the attack performance in other gesture per-
ception aspects, We reproduced Widar3.0 [60] recognition system.

We collect a set of data on four gestures (Push&Pull, Draw Circle,
Draw Zigzag, and Slide), and use the CNN model to implement
a gesture recognition system as our attack target, in which the
CSI amplitude is used as input data. The result of RISiren attack is
shown in Figure 24, the average recognition accuracy under attack
is lower than 25%. It proves the potential threat of RISiren to gesture
recognition applications.

8.7 Evaluation under harsh attacking conditions
In this section, we evaluate the performance of RISiren under harsh
conditions, including attack multi-receivers and attack without
exactly location of transceiver.

Performance without transceiver location information. In
the RISiren attack, we assume that the victim transceiver is known,
but at the same time in actual scenarios, this location information
may be not easy to collect. So, we verified the angle error toler-
ance performance of RISiren for the transceiver. The experimental
deployment and results are shown in the figure 25(a)(c). We fixed
the metasurface beam pointing at 0◦ and moved the transceiver
within plus or ±30◦ at intervals of 10◦. The experimental results
are shown in the figure 25(b)(d). RISiren attack success rate can
still reach average of 78.1% within a receiver offset of ±10◦, and the
attack effect still exists within ±30◦. For transmitter offset, RISiren
can maintain an average attack effect of over 80.4% within ±30◦.

Performance under multiple receivers. In order to verify
the attack performance under multiple receivers, we consider a
harsh attack scenario. We assume victim systems use multiple re-
ceivers for fall detection recognition. We use the feature combina-
tion process[50] and the experiment setup is shown in Figure 26(a),
We enable the receivers in order until all five receivers are enabled.
The result is shown in Figure 26(b), we found that the attack success
rate decreases as the number of receivers increases, because the
beam of metasurface can only cover limited receivers. When the
victim system has three receivers, RISiren can still maintain an
average attack success rate of over 50%. And up to five receivers, it
still has the attack effect. This proves that we can maintain good
attack performance under multiple receivers.

9 Discussion
9.1 Attack generality and Future work
In this section, we aim to discuss the attack generality of RISiren
from potential attack scenarios:

Attackunder 3D scenarios.RISiren can attackwhen the transceiver
and metasurface are positioned on different planes. This is because
RISiren’s metasurface can manipulate electromagnetic waves in
a 3D scenario, ranging from −60◦ to 60◦ in both azimuth and ele-
vation angles [25]. This region is the metasurfaces’ field-of-view
(FoV).When the receiver’s position falls in the region of FoV, RISiren
can still attack effectively. However, the ASR will diminish as the
boundary is approached since the limitation of FoV.

Attack under multi-activities detection systems. In gen-
eral, if the operating frequency band of the metasurface is same as
that of the recognition system. RISiren can achieve effective attack
because metasurface can reshape the channel characteristics of
electromagnetic waves. In Section 8.2, we have evaluated RISiren’s
attack performance under different daily activities. Beyond these
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evaluated activities, RISiren’s attack strategy can expand to attack
other daily activities with lower frequency and strength than target
camouflage activities like walking. RISiren’s attack performance
under gesture recognition is evaluated in Section 8.6. Additionally,
the attack target of the RISiren is the receiver rather than the activ-
ities themselves. RISiren’s key attack strategy is injecting powerful
camouflaged activity features to the receiver. If the location of the
receiver changes, RISiren only needs to reshape the electromagnetic
signal towards the new receiver’s location. Therefore we can apply
this to the scenarios of multi-activity detection.

Differentiated Attack. RISiren aims to indiscriminately (no
matter what the victim’s daily activities ) tamper with the victim’s
activity to resemble a camouflaged activity (e.g., walking) while
maintaining the passive and low power consumption characteristics
of themetasurface. To achieve differentiated attacks, a potential way
is embedded an activity recognition algorithm and synchronization
scheme on the metasurface to handle transient activities effectively
for differentiated attack. Although this approach may increase the
power consumption of the metasurface and make it harder for the
attacker to succeed, it is an interesting topic for the future work.

Attack under networked metasurface. Networked metasur-
face can expand the attack coverage region of RISiren when mul-
tiple metasurfaces cooperate with each other. Prior work [27] has
proposed mechanisms to coordinate multiple metasurfaces for com-
munication coverage improvement. A potential approach is to apply
RISiren attack strategies in the 𝑁 𝑡ℎ metasurface and maintain the
original coordination algorithm in the 1𝑡ℎ ∼ (𝑁 −1)𝑡ℎ metasurfaces.
It is an interesting topic for our future work.”

9.2 Limitations
Inherent limitations of metasurfaces. Due to the passive nature
of the metasurface, it can only reach electromagnetic waves on

its surface by reshaping Tx. The evaluation results show that its
attack distance is limited compared to attack devices that provide
additional sources. However, we can achieve amore stealth attack. It
is worth noting that for activity-aware attacks in indoor scenes, our
requirements for distance and a metasurface deployment location
are relaxed, and attackers can deploy metasurfaces at nearby yet
stealthy locations (e.g., across wall). RISiren can expand the attack
methods against wireless sensors and complement existing active
attacks. Besides, since the limitation of the beam width, RISiren
can not maintain the high performance without the knowledge
of victim’s transceiver. We have evaluated the angle tolerance for
transceiver in Section 8.7. Fortunately, the result shows that RISiren
only need the approximate location. And there are currently some
methods that can assist metasurface to estimate the receiver and
transmitter position, such as beam scanning, which will greatly
reduce the attacker’s attack limit, which will be the future work.
9.3 Potential defense
The adversarial interference caused by metasurface is almost indis-
tinguishable from the natural variations of multipath reflections.
We verified RISiren’s resistance to channel interference detection,
and the result was that it was unable to identify the presence of
interference in the environment. Therefore, its presence is difficult
to detect through existing techniques, such as packet loss analysis
method [17] and subcarrier correlation detection method [18] for
interference attacks. At the same time, the perceptual encryption
methods proposed by some existing work [32] can only prevent
malicious attackers from stealing CSI information, but they lack
resistance to tampering attacks.

A potential defense measure is to detect the intensity threshold
of the feature during feature extraction for activity segmentation,
as in the system we use to attack [37]. However, it should be noted
that raising the threshold solely for defense purposes will make
the user’s normal activities impossible. Energy also fails to reach
the threshold and is misjudged as no activity, thus affecting the
accuracy of normal perception and leading to an increase in er-
ror rates. Defense development needs to carefully consider this
dilemma. Another potential defense measure is to equip the re-
ceiver with a high-sensitivity antenna array to separate benign
reflection links from malicious metasurface paths [38], but this
goes against the original intention of low-cost and low-power con-
sumption of current Wi-Fi sensing devices. Therefore, a low-cost
and efficient wireless sensing protection system deserves further
study to resist malicious attacks.
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10 Related works
Wireless sensing systems: With the development of wireless
sensing technology, there have been some works dedicated to using
RFID and mmWave for exciting applications such as human activity
sensing, fall monitoring, and vital sign detection. Due to WiFi’s
excellent popularity and low cost, WiFi-based recognition systems
have been extensively explored in the field of human-computer
interaction. In recent years, it has been widely proposed for ap-
plications such as activity perception and health monitoring. The
identification of healthcare applications mainly includes hazardous
movements and vital sign signal monitoring. Hazardous action
recognition [11, 20, 36, 37, 45, 48, 52] typically utilizes wireless
transceivers deployed in the home to monitor the occurrence of fall
activity and be able to accurately alert potential risks. Vital signs
include heartbeat, breathing, etc. [9, 30, 58, 59], and the relevant
displacement of the human body surface is detected through wire-
less signal characteristics. Gesture recognition through wireless
sensing has also been well-studied. In [31, 61], for example, the au-
thors perform gesture perception through commercial off-the-shelf
(COTS) WiFi devices and establish a completely open data set for
future work. However, the consequences of successful attacks on
these important wireless sensing applications are serious.

Attack to wireless sensing system: Previous work has warned
us about the vulnerability of wireless sensing systems. Physical-
World [29] uses the extra WiFi signal to attack the human behavior
recognition system. The extraWiFi signal can cause packet collision
by the CSMA/CA protocol [35], which results in the loss of CSI
packets. Is-Wars [19] uses cross-technology interference (CTI) to
attack, the attacker transmits the noise into the victim CSI data on
overlapped frequency bands by ZigBee device. However, this extra
active source will be detectable and may lose stealthy. Wiadv [62]
uses state-of-the-art full-duplex devices tactfully forward to WiFi
signals to mimic dynamic multipaths. It can cause an adversarial
Doppler frequency shift in the victim spectrum. However, the high
cost of full-duplex antennas creates a burden for attackers

Smart metasurface applications: Intelligent metasurfaces
have emerged as a key theme in next-generation wireless com-
munication systems. Substantial research has investigated how a
metasurface modulates electromagnetic waves in the environment.
In the field of communication, RF-Bouncer [25] proposed a dual-
band frequency (5𝐺𝐻𝑧 and 2.4𝐺𝐻𝑧) metasurface to concentrate on
the signal and enhance the coverage area; Protego [24] proposed a
transmission metasurface provides sidelobe obfuscation commu-
nication security and enhances the signal strength in mainlobe. In
addition, the application of metasurface in wireless recognition
has also garnered attention. IRShield [43] diminished the chance of
eavesdroppers eavesdropping on leaked CSI by utilizing metasur-
face obfuscations. To the best of our knowledge, RISiren is the first
work to apply metasurface to attack against wireless recognition.

11 Conclusion
This paper introduces RISiren, a metasurface-assisted end-to-end
black-box attack system with high stealthiness. By invisibly inject-
ing adversarial activity features through a generalized camouflage
generation strategy, our experimental results show that RISiren
attacks achieved the attack success rate over 90% on average, and

it maintains robustness under different physical settings. Further-
more, our proposed attack method can be easily generalized to
other wireless sensing recognition applications. This work explains
potential vulnerabilities of wireless sensing systems and provides
insights for future secure and tamper-resistant system designs.
Furthermore, RISiren prompts a new contemplation on insidious
threats by manipulating the RF environment using metasurface.
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