
Unveiling Contactless Sensing with LiDAR Mobility

Junying Hu‡, Yongjian Fu‡, Lili Chen�, Xinyi Li�, Xue Sun†, Ju Ren�, Yaoxue Zhang�

‡Central South University, China,
�Northwestern Polytechnical University, China,
†National University of Singapore, Singapore,

�Tsinghua University, China,
‡{junying.hu, fuyongjian}@csu.edu.cn, �lilichen@nwpu.edu.cn, †snowing@nus.edu.sg,

�{xinyili, renju, zhangyx}@tsinghua.edu.cn

Abstract—This paper presents a novel contactless LiDAR-
based sensing method that achieves high precision even under
device motion. Traditional contactless systems are often compro-
mised by movement interference, which restricts their operational
scope and continuous sensing capability. To address this, we
employ LiDAR to capture depth images and convert them into
point clouds for analysis. This enables the detection of subtle
movements by examining changes in point cloud contours. Firstly,
we adapt depth images for input into RGB person segmentation
models, facilitating accurate segmentation and precise point cloud
data extraction for each target. Secondly, we utilize reflections
from stationary parts of the target to estimate and compensate
for device movement. Our findings reveal that the transition com-
ponent in the result of Iterative Closest Point (ICP) encompasses
both device and subtle movements of interest. Thus, we introduce
a Masked Iterative Closest Point (MICP) method that minimizes
the influence of the region of interest (RoI), allowing for precise
extraction of device motion information. Finally, we extract RoI
motion by analyzing the differences in transition components
between ICP and MICP results. Experimental validation shows
that our method maintains reliable respiration sensing with a
relative error below 5%, even at speeds of up to 20 cm/s and
distances up to 4 meters. This approach enhances the feasibility
of LiDAR in dynamic sensing environments.

Index Terms—wireless sensing, robot sensing systems, respira-
tion sensing, LiDAR

I. INTRODUCTION

Contactless sensing, an area garnering immense interest in

various fields, revolutionizes how we interact with our environ-

ment. By emitting signals like light, sound, or electromagnetic

waves, and analyzing their reflections, it discerns the char-

acteristics of targeted objects without physical contact. This

approach significantly differs from conventional methods that

necessitate direct contact between the target and sensors, often

leading to high costs, complexity, and discomfort. Contactless

sensing, in contrast, offers a more economical, convenient,

and user-friendly solution. Recent advancements in this field,

such as trajectory tracking [1], posture recognition [2], and

even fine-grained breathing [3] and heartbeat monitoring [4],

demonstrating its profound potential and versatility in practical

applications. While promising, most exiting systems presup-

pose stationary devices. This assumption overlooks numerous

real-world scenarios where devices are in motion, as shown in

Fig. 1. Examples abound, like handheld gadgets for monitoring

vital signs, robots dynamically sensing their surroundings, or

drones conduct surveillance and analysis of ground targets.

(a) Only one person in FoV. (b) Second person enters FoV as de-
vice moves.

Fig. 1. Motivating example. (a) Only one participant is within the Field of
view (FoV) when its position is fixed. (b) Our method maintained continuous
observation while positioning both individuals within the FoV.

Addressing this gap is crucial for the evolution and wider

applicability of contactless sensing technology.

Note that when the device remains stationary, it accurately

captures the target’s characteristics or subtle movements. Yet,

once in motion, its observations become a blend of the

target’s features and its own movement. This overlap causes

interference in sensi ng the target, making traditional sensing

technologies no longer work [5]. Therefore, it is crucial to

eliminate the negative impact of device motion on target

sensing.

Recent studies have looked into mitigating the effects of

device motion on wireless-based contactless sensing. [5] and

[6] were proposed for UWB- and acoustic-based sensing,

respectively. They employ signals reflected from stationary

objects in the environment, which are only affected by device

motion, to isolate target motion from the mixed received

signals. This method, however, is dependent on static envi-

ronmental references and can be influenced by environmental

changes. Another study [7] investigated eliminating device

motion impact in LoRa based sensing. The method involves

using two antennas on a robot, which provide similar signals

when in the same position. As the robot moves, the second

antenna can identify the target’s movement by comparing

its received signals to those previously received by the first

antenna. This technique requires aligning two antennas in

the moving direction of the device, making it unsuitable for

devices with unpredictable movements. Additionally, due to

the still limited spatial resolution of wireless signals, above

systems assume the target to be a single point, which makes

them susceptible to interference from movements of other
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Fig. 2. System overview. Depth images and corresponding intrinsic matrices are used as inputs. We leverage Object-Centric Feature Extraction to create point
clouds for each individual, from which respiratory signals are extracted using Device Motion Elimination.

uninterested parts or areas of the target.

In this paper, we aim to introduce an innovative sensing

approach that supports device mobility. For the purpose, we

choose to employ commercial LiDAR for contactless sensing.

Given that LiDAR has been integrated into many mobile

devices (like phones, robots, cars, and drones) [8] and offers

high spatial resolution, it allows us to discern distance changes

of different parts of the target from the observed time-of-flight

(ToF) signals. This means we can differentiate various parts

of the target, thereby utilizing the stationary parts to obtain

the device’s motion information. Furthermore, we use it to

eliminate device motion from the mixed motion of interested

target areas we aim to sense, which allows us to achieve

accurate motion sensing for RoI. In this work, we take human

respiration sensing as the example task to validate our idea.

Specifically, we transform the depth image captured by LiDAR

into a point cloud, thereby enabling the fitting of the target’s

contours in three-dimensional space. By analyzing changes in

the point cloud data of the target’s contours, we can detect

subtle movements of RoI, particularly in the chest region of

the target.

Turning our idea into a practical system involves over-

coming several challenges. One of the primary issues is that

the depth information captured by LiDAR includes both the

environmental background and the target. To accurately detect

individual targets in settings with multiple targets, it’s crucial

to separate the depth data specific to each target. Typically, this

is achieved using RGB image for effective object segmenta-

tion, but this approach incurs extra costs and privacy concerns.

Instead, we propose to use the depth image as input to the

conventional RGB segmentation model for extraction of target

contours. However, employing raw depth image directly for

segmentation leads to blurred boundaries between the target

and the background. To address this, we perform preprocessing

on the depth image, clarifying boundary details and attaining

segmentation precision on par with RGB-based methods.

Secondly, we convert the target’s depth image into a point

cloud [9] and use the ICP [10] registration method to rigidly

rotate and translate it. This aligns the point cloud’s overall

contours at various moments. However, directly detecting sub-

tle movements within a RoI is complex. The challenge stems

from the rigid nature of ICP matching - small local changes in

target contours can disrupt the process. Upon deeper analysis,

we found that ICP matching produces a transformation matrix

consisting of rotation and transition. The transition component

encompasses both the device motion and subtle movements of

the target. Consequently, we extract the subtle movements of

the target from the acquired transition component, rather than

directly observing the aligned point cloud. We develop a MICP

registration method that assigns lower weights to a RoI on the

target surface to minimize the impact of its motion, yielding

a transition component that includes only device motion. By

subtracting the transition component of MICP from that of

standard ICP, we can accurately track the motion of a RoI.

In this paper, we make the following contributions. First,

we addressed the issue of using depth images as inputs for

traditional RGB segmentation models to segment the human

body, and utilized the extracted human body mask to retrieve

the target point cloud. Second, we analyzed the limitations of

observing RoI contour changes directly from the target point

cloud after ICP contour matching. Third, recognizing that the

transition component in ICP results contains both device and

RoI movement, we proposed a MICP approach to minimizes

the influence of RoI on contour matching, facilitating the

extraction of device motion. We then accurately determined the

RoI movement by analyzing the transition differences between

ICP and MICP results.

II. SYSTEM DESIGN

In this section, we take the example of respiration sensing to

illustrate our newly designed method for negating the effects

of device motion.

A. System Overview

The system flow is presented in Fig. 2. Firstly, we use

LiDAR to capture the depth image frames, which include raw

depth information from both the environment and the subjects

of interest. Then, we use object-centric feature extraction to

dispel the environment-related features and distill the object-

specific ones (e.g., the human body). To improve image con-

trast and accurate segmentation, we employ contrast limited

adaptive histogram equalization (CLAHE) [11] to overcome

the challenge posed by the RGB segmentation models on

depth data. Following feature extraction, the enhanced depth

images are transformed into point cloud frames in conjunction

with the intrinsic matrix. These frames are prepared for further

analysis after minimizing background noise through statistical

outlier removal (SOR) [12]. For device motion elimination, the

system addresses the critical challenge of device motion which

can corrupt the respiratory signals. We firstly align the point
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Fig. 3. Person segmentation and point cloud extraction.

cloud frames at ti and t0 using ICP to obtain the transition oo′,

which encompasses both device and RoI motions. Following

that, MICP is proposed to extract pure device motion, which

assigns lower weights to points within the RoI to suppress the

influence of RoI motion on 3D contour matching. The final

output is the isolated respiratory signal, derived by comparing

the outputs from the ICP and MICP methods.

B. Object-Centric Feature Extraction

The raw point cloud collected by LiDAR contains re-

flections from the environment and one or more interested

objects (e.g., humans). To enable multi-object sensing indepen-

dent of the environment, a series of steps is required to isolate

features for each object from the raw data. A straightforward

solution is to adopt object segmentation approaches inspired

by computer vision [13]. However, the advanced segmentation

models are typically designed for RGB images instead of

depth images. As illustrated in Fig. 3, applying well-designed,

off-the-shelf models to depth images results in distorted seg-

mented object sub-images, making it challenging to obtain

accurate object information. This limitation is primarily due

to the significant depth gradient differences between objects

and background. Specifically, different parts of an object (such

as the top and bottom) may exhibit significant depth gradient

variations, with the gradient at the top against the background

being markedly higher than that at the bottom. The relatively

minuscule depth gradient of the object’s bottom concerning the

global depth map blurs the bottom features, hindering convo-

lutional operators designed for RGB images from accurately

extracting object shape features.

One could recollect and annotate depth image data to

address this challenge of retraining segmentation models.

However, this method incurs considerable extra costs due to

the need for extensive training data to eliminate the influence

of different depth imaging device models, environments, and

objects. Therefore, we preprocessed depth images to adapt

them for RGB model input, as shown in Fig. 3. our key

idea is to bridge the depth gradient gap between different

parts of the object and the background by leveraging signal

preprocessing, making depth images compatible with existing

segmentation models. Through experiments, we found that

the most significant factor affecting the segmentation results

is the image contrast. Therefore, we employed CLAHE [11]

to enhance image contrast, approximating the effect of using

(a) Point clouds in two frames. (b) Aligned point clouds.

Fig. 4. Example for two point clouds in different frames. (a) Point cloud
before 3D contour matching; (b) Point cloud after 3D contour matching.

Fig. 5. Motion analysis of RoI following 3D contour matching. First, oo′

from ICP represents device motion. The ground truth is the respiration signal
obtained via UWB. RoI motion is the variation in the average distance of
points within the RoI.

RGB images as input. Finally, we applied the obtained human

mask to the depth image to acquire the depth values of various

parts of the human body, thereby converting it into human

point cloud data in conjunction with the intrinsic matrix [9].

However, the obtained human point cloud data still included

some points from the background. We further processed the

human points using the SOR [12] to achieve more accurate

results.

C. Direct RoI Motion Sensing Is Ineffective

When the device is in motion, the position of the target in

the depth image changes, making it impossible to set a unified

RoI for all depth image frames. So we cannot consistently

observe the depth changes at the same position of the target,

and this error can easily overwhelm the subtle respiratory

signals. By converting the depth map into point cloud data, we

found that these issues arise because the position of the target

in the LiDAR coordinate system continuously changes with the

movement of the device as revealed in Fig. 4(a). Therefore, if

we can perform contour matching on the point cloud data from

different frames, we can not only unify the RoI but also resolve

the issue of coupling between device movement information

and depth values as revealed in Fig. 4(b).

The ICP method is a classical method used for 3D coutour

matching. Specifically, considering two point cloud frames, P

as the initial frame and Q as the target frame, the core idea

of ICP is to use optimization to find a transformation function

T(.) that minimizes the difference between T(P) and Q. For
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Fig. 6. Analysis of transition oo′ during static and moving states of the
LiDAR. When LiDAR is stationary, the trend of oo′ perfectly match the
respiration signal.

simplicity, we only consider T(.) as a rigid transformation,

which is a reasonable assumption given the macroscopic

relative motion between the device and the human body.

Hence, T(.) can be obtained by a rotation matrix R and a

transition matrix t, yielding T (P ) = R∗P + t. The estimation

problem of the device’s trajectory can be formulated as the

following optimization problem.

E(T ) =
∑

(p,q)∈k

((p− Tq) · np)
2

(1)

T =

[
R oo′

0 1

]
(2)

In this context, p and q respectively represent points within

P and Q. np is the normal of point p. T is the matrix

including a 3-dimensional rotation matrix R and a transition

value oo′. The ICP method used here is the point-to-plane

ICP algorithm [14] that has a faster convergence speed than

the point-to-point ICP algorithm.

After applying the ICP method, the target’s contours in

different frames are aligned, which means we can set a unified

RoI to monitor the motion caused by exhalation and inhalation.

The expectation is that the motion of points within the RoI

region aligns with the target’s respiratory signal, as shown in

Fig. 4(b).

To this end, we conducted an experiment where an indi-

vidual was seated facing the LiDAR mounted on a mobile

robot, which moved the equipment forward and backward.

We calculate the average distance of points within the RoI

and use its variation to estimate the expected RoI motion. The

results, depicted in Fig. 5, show that the waveform of the RoI

motion signal significantly deviates from the ground truth. This

discrepancy arises primarily because the sparsity of the LiDAR

point cloud changes with distance (e.g., point separation varies

from 5mm to 20mm at distances from 1m to 4m), preventing

a consistent match across different frames. Additionally, the

standard Iterative Closest Point (ICP) method, which only

accounts for rigid body transformations, fails to capture subtle

morphological changes in the chest and abdomen regions.

Consequently, direct observation of RoI motion using matched

point cloud data does not accurately reflect respiratory signals,

rendering direct RoI motion sensing for respiratory monitoring

unfeasible.

After further analysis of the experimental data, we observed

that with the device stationary, changes in transition value oo′

(a) oo′ from unmodified ICP (b) oo′ from MICP

Fig. 7. Analysis of oo′ when device is stationary. (a) oo′ from unmodified ICP.
Since the device remains stationary, the trend of change in oo′ is consistent
with the participant’s breathing. (b) oo′ from MICP with low weights for
points in RoI. The respiratory component is suppressed; theoretically, oo′

should always equal zero. Fluctuations in oo′ mainly stem from involuntary
minor movements by the participant and device distortion.

align with the respiratory signal, as shown in Fig. 6. This in-

dicates that the subtle chest and abdominal movements during

respiration influence the ICP matching outcomes, confirming

that oo′ encapsulates the respiratory signal. When the device

is in motion, oo′ captures both the device’s motion and the

respiratory signal of the target. Thus, a new concept was

formulated: By eliminating the device’s motion from oo′, an

accurate respiratory signal can be accurately extracted.

D. Device Motion Extraction

The reason oo′ contains the respiratory signal is primarily

because ICP considers the contribution of all points in the

point cloud, including both the stationary points of various

parts of the body and the points on the surface of chest and

abdomen that move with respiration. Therefore, the obtained

oo′ includes not only the device’s motion but also the changes

in the chest and abdomen. If the points on the chest and

abdomen can be removed or given smaller weights, their

influence on the ICP can be minimized, resulting in oo′

containing only the device’s motion. To achieve this goal, we

propose a method called MICP. Our intuition is that the minor

movements of the RoI caused by breathing have a limited

impact on the point cloud (for instance, breathing is confined

to the chest area), and thus, the influence of breathing can

be mitigated by reducing the weight of the local motion area

during the point cloud registration process. Specifically, we

added a parameter wp in the ICP method to represent the

weight of point p. The modified optimization problem is:

E(T ) =
∑

(p,q)∈k

((p− Tq) · npwp)
2

(3)

By assigning a lower weight to the points located in RoI,

we can minimize the impact of their slight movements on

the ICP, to get pure device motion. Here, we specify the

RoI by manually selecting a mask. As all point cloud frames

are aligned to the first frame, we apply a mask to the depth

image at t0 to delineate the RoI. Although the weights set

to zero can maximize the discrepancy between MICP and

ICP, it will introduce the error in MICP leading to the breath
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Fig. 8. Respiration extraction by device motion elimination. Due to the large-
scale movement of the device, oo′ from ICP and MICP are indistinguishable
across the entire curve. However, distinct differences emerge in smaller
segments. These differences, identified as the respiration signal (RoI motion),
align perfectly with the ground truth in the bottom curve.

motion may be submerged. Therefore, we adjust the weights to

balance maximizing differences while preserving the accuracy

of MICP.

To assess its efficacy, we conducted an experiment where

the LiDAR was positioned 2 meters in front of the participants.

Using both ICP and MICP methods, we monitored oo′ as

shown in Fig. 7. While the LiDAR and participant were

stationary, oo′ captured respiratory components as shown in

Fig. 7(a). On contrast, the MICP method to reduce point

weights within RoI significantly suppressed these respiratory

signals. Despite involuntary minor movements by the partici-

pant and device distortion causing fluctuations under 2mm, oo′

from ICP were deemed to predominantly reflect device motion

rather than participant respiration, as revealed in Fig. 7(b).

E. Device Motion Elimination

We hypothesize that oo′ derived via MICP is primarily

influenced by the stationary points, thus predominantly re-

flecting device motion. This value at time t is denoted as

oo′MICP (Qt, Pstatic), where Qt represents the point cloud at

time t and Pstatic is the static subset of the initial point cloud

at t0 outside the RoI. In contrast, the standard ICP method

incorporates both dynamic and static points, affecting the 3D

contour matching. Consequently, oo′ via ICP is influenced by

the entire target point cloud, capturing both device and RoI

motions. This is represented as oo′ICP (Qt, Pstatic∪Pdynamic),
where Pdynamic includes points within the RoI at t0.

Given that oo′ is a three-dimensional vector describing the

trajectory in the LiDAR coordinate system, it is essential

to project this vector in a specific direction for analysis.

Considering the Z-axis aligns with the LiDAR’s directional

orientation, we project oo′ onto �Z to isolate the respiratory

signal. Then the breathing magnitude can be expressed as:

y(t) =
∣∣∣oo′ICP (Qt, Pstatic ∪ Pdynamic) · �Z

∣∣∣
−

∣∣∣oo′MICP (Qt, Pstatic) · �Z
∣∣∣ (4)

We set up an experiment to demonstrate device motion

elimination, as configured in Fig. 5. The result is shown in

Fig. 9. Experimental hardware (left) and scene (right).

Fig. 8. The figure initially presents the oo′ values derived from

ICP and MICP, highlighting their discrepancies. The difference

between these values was used as the respiratory signal, which

perfectly matched the ground truth.

III. EVALUATION

Section 3.A details our experimental setup, encompassing

LiDAR, ground truth, mobile platform, signal processing, and

scene parameters. In Section 3.B, we demonstrate the compre-

hensive performance of our method, validating its effective-

ness in human respiratory sensing under typical conditions.

Sections 3.C-D assess the system’s robustness to variations in

speed, distance, and the multiple targets sensing. Section 3.E

further confirms the necessity of the depth image enhancement

outlined in Section 2.A.

A. Evaluation Setup

LiDAR. We utilized the LiDAR sensor on the iPhone 13

Pro Max and the Intel RealSense LiDAR Camera L515 [15]

to capture depth images and intrinsic matrices. These devices

deliver depth images at a frequency of 30 Hz, with resolutions

of 256× 192 for the iPhone and 320× 240 for the L515.

Ground truth. In our experiments, we employed a contact-

less UWB-based method for respiratory monitoring. Compared

to contact-based methods requiring subjects to wear devices

on their thorax or abdomen, UWB-based monitoring allows

subjects to remain relaxed and avoids interfering with the

LiDAR sensing. We utilized an ESP32-S3-DevKitC-1 [16]

development board connected to an X4M05 [17], positioned

statically in front of the subject, to ensure that the UWB data

could extract subjects’ respiration signals.

Mobile platform. We mounted the LiDAR on a four-wheeled

robot and developed an application to control its movement via

Bluetooth. To maintain the stability of the LiDAR and ensure

that the subject remained within its field of view at all times,

we connected the robot and the LiDAR using a Hohem iSteady

M6 [18] gimbal, which features target tracking capabilities.

Signal processing. We transmitted the respiratory signals

captured by the X4M05 to the iPhone 13 Pro Max via WiFi,

aligning them in time with the LiDAR data. Subsequently, the

iPhone 13 Pro Max forwarded both the UWB and LiDAR data

to a MacBook for processing. In the experiment involving the

L515, we directly captured depth information from the L515
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(a) Respiration error (b) Relative error

Fig. 10. Overall performance. (a) Respiration rate error, (b) Relative error
that is the percentage of the respiration error relative to the respiration rate.

to a laptop and aligned the depth frames with UWB frames

on the laptop. We employed the macOS API VNGenerate-

PersonInstanceMaskIRequest for person segmentation, used

the TransformationEstimationPointToPlane method from the

Open3D library [19] for point cloud matching, and modified

this method to implement the MICP algorithm described in

this paper. Finally, we compared the respiratory signals derived

from the LiDAR data with the ground truth provided by the

UWB device to validate the effectiveness of our methods.

Scene and Parameters. All experiments were conducted

in our laboratory with five participants (three males and

two females). Participants were seated facing the LiDAR,

supported by a chair with a backrest to minimize motion

artifacts from involuntary movements during respiration. The

UWB device was positioned laterally between the LiDAR and

the participant, facing the subject to avoid the LiDAR’s field of

view and optimize signal reception from the participant. The

hardware and the placement of them is shown in Fig. 9. The

comprehensive performance evaluation involved collecting 5

minutes of data from each participant, while other experiments

collected 1 minute of data. The experimental environment

remains consistent when verifying the effects of specific

parameters. In the MICP algorithm, the points within the

RoI region were assigned weights of 0.2, with other points

weighted at 1.

B. Overall Performances

Our system demonstrated accurate respiratory detection

under typical conditions using both the LiDAR of the iPhone

13 Pro Max and the L515, operating at a speed of 20 cm/s.

Fig. 10(a) illustrates the respiratory rate error values across

participants. All but the fourth participant exhibited minimal

error rates. Due to the extremely low respiration error (< 0.02

bpm), there is no discernible trend in performance between

the two LiDAR devices under typical conditions. The fourth

participant’s higher error rate was attributed to lower breathing

amplitude, making it challenging to distinguish between some

peak and trough values. Conversely, the L515 exhibited better

stability with shallow breathing. We also assessed the rela-

tive respiratory error rates for each participant, all of which

remained below 5%, as shown in Fig. 10(b). These results

affirm that our method can reliably monitor respiratory rates

at common indoor robot speeds (e.g., a robot vacuum moving

at 20 cm/s), proving its practical utility.

(a) Impact of distance (b) Impact of device moving speed

Fig. 11. Impact of different factors.

C. Parameters Evaluation

Distance. We investigated the effect of distance between

the device and the participant on respiratory detection using

iPhone 13 Pro Max. Distance was measured from the target’s

back to the LiDAR, increasing in 1-meter increments from 0

to 5 meters. As depicted in Fig. 11(a), error rates remained

extremely low within a 3-meter distance and showed no corre-

lation with distance, indicating flawless sensing performance.

The minor fluctuations observed are likely attributable to

environmental variables. At 4 meters, the error rate slightly

increased to 0.7063bpm but was still within acceptable limits.

Beyond 4 meters, at 5 meters, the method could not provide

reliable error rates due to significant data distortion from

the LiDAR on the iPhone 13 Pro Max, impairing effective

respiratory detection.

Speed. We investigated the effects of device movement

speed (0, 5, 10, 15, and 20 cm/s) on respiratory detection

accuracy using iPhone 13 Pro Max. As depicted in Fig. 11(b),

at a device movement speed of 0 cm/s, the error rate was zero,

indicating perfect alignment between the measured respiratory

signals and the ground truth, including breath amplitude. At

speeds of 5, 10, and 15 cm/s, the error rates were consistently

low with no apparent correlation to movement speed. At 20

cm/s, the error rate rose to 0.22406, yet remained within

acceptable limits.

This study demonstrated the robustness and practical appli-

cability of our method by investigating the effects of device-

to-participant distance and device speed on detection perfor-

mance.

D. Multiple Targets

We investigated the potential of our method for target

perception in a multi-person setting using iPhone 13 Pro Max.

As illustrated in Fig. 12(a), the experimental setup involved

two participants facing the LiDAR from a distance of 2.5

meters. Participant 1 was seated sideways, while Participant

2 faced directly towards the LiDAR. The device, mounted on

a mobile robotic platform, cyclically moved back and forth at

20 cm/s over a distance of 50 cm. Fig. 12(b, c) shows that

the respiratory outcomes for both participants aligned with

the ground truth. Participant 2 exhibited clearer respiratory

signals compared to Participant 1, whose breathing amplitude

was lower and some peaks were nearly indiscernible. This was

due to Participant 1’s sideways posture, which reduced the
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Fig. 12. Sensing results for multiple targets.

amplitude of chest and abdominal movements when projected

onto the LiDAR’s z-axis. This experiment confirmed that our

method accurately detects individual breathing patterns in a

multi-person environment.

E. Depth Image Enhancement

To assess the efficacy and necessity of depth image enhance-

ment in our methodology, we analyzed single-person scenarios

at varying distances using iPhone 13 Pro Max. Fig. 13(a)

illustrates the participant mask generated at a 4-meter distance

using an RGB image via the macOS API VNGeneratePerson-

InstanceMaskIRequest, serving as ground truth. This baseline

facilitated a comparative analysis of results using raw depth

images versus CLAHE-enhanced depth images, depicted in

Fig. 13(b) and Fig. 13(c) respectively. The comparison clearly

shows that the CLAHE-enhanced depth images align more

closely with the ground truth, while the raw depth images

incorporate excessive environmental noise and lack detail.

For a quantitative evaluation, we computed metrics across

distances from 1 to 4 meters. The Details Lost metric quan-

tifies the percentage of missing detail pixels relative to the

ground truth, and the Environment metric measures the excess

environmental pixels as a percentage of the ground truth. The

Rel. error <5% metric assesses whether the relative error in

respiratory detection remains below 5%. Table 1 demonstrates

that using raw depth images results in greater detail loss

and increased environmental interference as distance extends,

leading to a relative respiratory detection error rate exceeding

5% at distances of 3-4 meters. In terms of Details Lost and En-

vironment indicators, the performance is not decrease linearly.

The reason is that different background and objects in the

environment may appear in FoV at different distances, which

may slightly affect the performance of image enhancement.

TABLE I
ANALYSIS RESULTS FOR DEPTH AND ENHANCED DEPTH IMAGES AT

VARIOUS DISTANCES

Distance Details Lost (%) Environment (%) Rel. error < 5%

Origin Enhanced Origin Enhanced Origin Enhanced

1 3.285 2.219 3.115 2.034 � �

2 7.684 13.739 8.530 5.281 � �

3 18.878 11.548 19.296 7.940 � �

4 21.653 13.071 90.315 5.682 � �

(a) Ground truth (b) Unmatched (c) Qualified

Fig. 13. Person segmentation at distance of 4m using (a) RGB (as ground
truth), (b) Depth, and (c) Depth-Clahe as inputs respectively.

IV. RELATED WORK

Wireless-based respiration sensing. A variety of wireless

signals, such as Wi-Fi, sound, and ultra-wideband (UWB),

are being utilized for respiration sensing. Sound signals,

characterized by their slower propagation speed, can dis-

tinguish reflections that are very close to each other (i.e.,

less than 4.25cm) even under a narrow bandwidth of 4KHz.

However, the inherent short-distance propagation characteristic

limits their sensing range [20]. Contrastingly, WiFi signals

are distinguished by their longer propagation range, which

facilitates the detection of respiration across expansive indoor

spaces. However, the relatively narrow bandwidth of WiFi

signals constrains their effectiveness, particularly for multi-

target sensing at close proximities [21]. In recent years, the

advent of more advanced UWB signals, now equipped in many

smartphones like iPhones and Samsung models, benefit from

their large bandwidth, making them suitable for multi-target

sensing [22].

Camera-based respiration sensing. Researchers have in-

vestigated the use of visual signals for respiration sensing,

which enables direct observation of the human body’s entire

contour [23], [24]. These methods have implemented auto-

matic RoI detection and noise suppression techniques, en-

abling direct observation of movements in the chest or abdom-

inal area. However, their sensing accuracy can be significantly

affected by the involuntary body movements. Recent attempts

address motion artifacts by employing multiple cameras [25].

The principle behind this is to observe the changes in the

front and back contours of the body, thereby deducing the

movements of the chest and abdomen.

493

Authorized licensed use limited to: Tsinghua University. Downloaded on April 12,2025 at 02:00:31 UTC from IEEE Xplore.  Restrictions apply. 



V. DISCUSSION AND FUTURE WORK

Refinement of RoI Selection. The selection of the RoI is

closely linked to the characteristics of the clothing, as LiDAR-

based respiration monitoring relies on detecting subtle changes

in the contours of the fabric during breathing. Loose-fitting

clothing presents a challenge since only certain parts of the

fabric move consistently with chest movements. In this paper,

we manually selected a region encompassing the chest and

abdomen to maximize coverage. For future work, we will

develop an automatic RoI selection method to enhance the

robustness of LiDAR-based respiration monitoring.

Human orientations. The amplitude of the respiration

curve may be understated in this study, as it only considers

projecting the transitional component onto the Z-axis of the

LiDAR coordinate system. This approach potentially intro-

duces errors by overlooking minor chest movements. Future

work will explore strategies to mitigate this issue, including

the identification of an optimal mapping vector.

Multiple targets sensing. When multiple targets are

present, this paper extracts the depth information of each

target and derives respiration signals similarly to a single

target scenario. The performance largely hinges on the human

segmentation model. Segmentation accuracy is influenced by

the LiDAR’s Field of View (FoV) and the number of targets,

which are beyond the scope of this paper. Future work will

investigate lightweight segmentation models for LiDAR to

optimize multi-target sensing performance.

VI. CONCLUSION

In this paper, we have introduced a novel contactless sensing

approach that utilizes LiDAR mobility to enable precise sens-

ing of RoI while device is in motion. Our method addresses the

critical challenge of device motion interference by leveraging

reflections from stationary parts of the target to estimate

and compensate for device motion. Taking the example of

respiration sensing, we enable traditional RGB segmentation

models to achieve accurate person segmentation when using

depth images as input. Through experiments, we have shown

that our proposed MICP registration method can effectively

isolate target motion information, enabling accurate sensing of

human respiration even when the sensing device is in motion.
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